Prime Day

Como cliente Amazon Prime obtén 3 meses de Audible gratis

Diseño de la portada del título Machine Learning

Machine Learning

An Overview of Artificial Intelligence

Muestra
Suscríbete ahora Prueba gratis durante 30 días
Oferta válida hasta el 12 de diciembre de 2025 a las 23:59 h.
Después de los 30 días, 9,99 €/mes. Cancela tu siguiente plan mensual cuando quieras.
Ahorra más del 90% en tus primeros 3 meses.
Escucha todo lo que quieras de entre miles de audiolibros, podcasts y Audible Originals incluidos.
Escucha cuando y donde quieras, incluso sin conexión.
Sin compromisos. Cancela mensualmente.
Disfruta de forma ilimitada de este título y de una colección con 90.000 más.
Escucha cuando y donde quieras, incluso sin conexión.
Sin compromiso. Cancela tu siguiente plan mensual cuando quieras.

Machine Learning

De: Charles River Editors
Narrado por: Jim D Johnston
Suscríbete ahora Prueba gratis durante 30 días

Paga 0,99 € por los primeros 3 meses y 9,99 €/mes después. Posibilidad de cancelar cada mes. Oferta válida hasta el 12 de diciembre de 2025.

Después de los 30 días, 9,99 €/mes. Cancela cuando quieras.

Compra ahora por 6,99 €

Compra ahora por 6,99 €

3 meses por 0,99 €/mes Oferta válida hasta el 12 de diciembre de 2025. Paga 0,99 € por los primeros 3 meses y 9,99 €/mes después. Se aplican condiciones.Empieza a ahorrar

Acerca de este título

Machine learning, in its broadest sense, is a series of methods to recognize and exploit patterns in data. The name comes from the goal of trying to automate (via machines) the process that humans have used to observe the world around them and draw conclusions (i.e. learn) from those observations. Although all practical work in the machine-learning field is done through computer programming, the concepts are independent of programming knowledge and instead rely on a mathematical basis. This overview will look only at the conceptual and mathematical side of the field, with little mention of the programming or practical applications.

There are a multitude of algorithms that are grouped within the general category of machine learning. Depending on the type of information available, as well as the goal of a problem, many techniques will not work well or simply be impossible to apply. The key to learning different algorithms is to know in which situation each functions best. In many situations, there is some sample data from a system, and the goal is to interpret this data to define the system or to predict the behavior of new situations. These techniques will be examined later in the overview. Initially, problems will not provide sample data, but instead define a problem according to some constraints; the goal will be to find an optimal solution given the constraints.

Machine Learning: The History of Automating Computers to Observe and Analyze Data looks at the attempts to develop machine learning, from successes to failures. You will learn about machine learning like never before.

©2018 Charles River Editors (P)2018 Charles River Editors
Ingeniería
No hay reseñas aún