Como cliente Amazon Prime obtén 3 meses de Audible gratis
Software Engineering for Data Scientists
From Notebooks to Scalable Systems
No se ha podido añadir a la cesta
Error al eliminar la lista de deseos.
Se ha producido un error al añadirlo a la biblioteca
Se ha producido un error al seguir el podcast
Error al dejar de seguir el podcast
Puedes escucharlo ahora por 0,99 €/mes durante 3 meses con tu suscripción a Audible.
Compra ahora por 15,99 €
-
Narrado por:
-
Teri Schnaubelt
-
De:
-
Catherine Nelson
Acerca de este título
Data science happens in code. The ability to write reproducible, robust, scaleable code is key to a data science project's success—and is absolutely essential for those working with production code. This practical book bridges the gap between data science and software engineering, and clearly explains how to apply the best practices from software engineering to data science.
Examples are provided in Python, drawn from popular packages such as NumPy and pandas. If you want to write better data science code, this guide covers the essential topics that are often missing from introductory data science or coding classes, including how to understand data structures and object-oriented programming; clearly and skillfully document your code; package and share your code; integrate data science code with a larger code base; learn how to write APIs; create secure code; apply best practices to common tasks such as testing, error handling, and logging; work more effectively with software engineers; write more efficient, maintainable, and robust code in Python; put your data science projects into production; and more.
PLEASE NOTE: When you purchase this title, the accompanying PDF will be available in your Audible Library along with the audio.